qml.sample

sample(op=None, wires=None)[source]

Sample from the supplied observable, with the number of shots determined from QNode, returning raw samples. If no observable is provided then basis state samples are returned directly from the device.

Note that the output shape of this measurement process depends on the shots specified on the device.

Parameters:
  • op (Operator or MeasurementValue) – a quantum observable object. To get samples for mid-circuit measurements, op should be a MeasurementValue.

  • wires (Sequence[int] or int or None) – the wires we wish to sample from; ONLY set wires if op is None.

Returns:

Measurement process instance

Return type:

SampleMP

Raises:

ValueError – Cannot set wires if an observable is provided

Warning

In v0.42, a breaking change removed the squeezing of singleton dimensions, eliminating the need for specialized, error-prone handling for finite-shot results. For the QNode:

>>> @qml.qnode(qml.device('default.qubit'))
... def circuit(wires):
...     return qml.sample(wires=wires)

We previously squeezed out singleton dimensions like:

>>> qml.set_shots(circuit, 1)(wires=1)
array(0)
>>> qml.set_shots(circuit, 2)(0)
array([0, 0])
>>> qml.set_shots(circuit, 1)((0,1))
array([0, 0])

With v0.42 and newer, the above circuit will always return an array of shape (shots, num_wires).

>>> qml.set_shots(circuit, 1)(wires=1)
array([[0]])
>>> qml.set_shots(circuit, 2)(0)
array([[0],
[0]])
>>> qml.set_shots(circuit, 1)((0,1))
array([[0, 0]])

Previous behavior can be recovered by applying qml.math.squeeze(result) to the array.

The samples are drawn from the eigenvalues \(\{\lambda_i\}\) of the observable. The probability of drawing eigenvalue \(\lambda_i\) is given by \(p(\lambda_i) = |\langle \xi_i | \psi \rangle|^2\), where \(| \xi_i \rangle\) is the corresponding basis state from the observable’s eigenbasis.

Note

QNodes that return samples cannot, in general, be differentiated, since the derivative with respect to a sample — a stochastic process — is ill-defined. An alternative approach would be to use single-shot expectation values. For example, instead of this:

from functools import partial
dev = qml.device("default.qubit")

@partial(qml.set_shots, shots=10)
@qml.qnode(dev, diff_method="parameter-shift")
def circuit(angle):
    qml.RX(angle, wires=0)
    return qml.sample(qml.PauliX(0))

angle = qml.numpy.array(0.1)
res = qml.jacobian(circuit)(angle)

Consider using expval() and a sequence of single shots, like this:

from functools import partial
dev = qml.device("default.qubit")

@partial(qml.set_shots, shots=[(1, 10)])
@qml.qnode(dev, diff_method="parameter-shift")
def circuit(angle):
    qml.RX(angle, wires=0)
    return qml.expval(qml.PauliX(0))

def cost(angle):
    return qml.math.hstack(circuit(angle))

angle = qml.numpy.array(0.1)
res = qml.jacobian(cost)(angle)

Example

from functools import partial
dev = qml.device("default.qubit", wires=2)

@partial(qml.set_shots, shots=4)
@qml.qnode(dev)
def circuit(x):
    qml.RX(x, wires=0)
    qml.Hadamard(wires=1)
    qml.CNOT(wires=[0, 1])
    return qml.sample(qml.Y(0))

Executing this QNode:

>>> circuit(0.5)
array([ 1.,  1.,  1., -1.])

If no observable is provided, then the raw basis state samples obtained from device are returned (e.g., for a qubit device, samples from the computational device are returned). In this case, wires can be specified so that sample results only include measurement results of the qubits of interest.

from functools import partial
dev = qml.device("default.qubit", wires=2)

@partial(qml.set_shots, shots=4)
@qml.qnode(dev)
def circuit(x):
    qml.RX(x, wires=0)
    qml.Hadamard(wires=1)
    qml.CNOT(wires=[0, 1])
    return qml.sample()

Executing this QNode:

>>> circuit(0.5)
array([[0, 1],
       [0, 0],
       [1, 1],
       [0, 0]])

Contents

Using PennyLane

Release news

Development

API

Internals